S6 CS Programme Elective
CST362 Programming in Python

Module 3




OVERVIEW OF TURTLE GRAPHICS

e Turtle is an icon located at a specific position in the
window specified with (x,y)

e Initial position 1is the origin or home

e an important attribute 1is heading or the direction 1in
which it currently faces

e Initial heading is 0 degrees due east on 1its map

e Attributes make up a turtle’s state which determines how
the turtle will behave when any operations are applied



SOME ATTRIBUTES OF A TURTLE

Heading

Color

Width

Down

Specified in degrees, the heading or direction increases in value as the turtle
turns to the left, or counterclockwise. Conversely, a negative quantity of
degrees indicates a right, or clockwise, turn. The turtle is initially facing east,
or O degrees. North is 90 degrees.

Initially black, the color can be changed to any of more than 16 million other
colors.

This is the width of the line drawn when the turtle moves. The initial width is
1 pixel. (You'll learn more about pixels shortly.)

This attribute, which can be either true or false, controls whether the turtle’s
pen is up or down. When true (that is, when the pen is down), the turtle draws
a line when it moves. When false (that is, when the pen is up), the turtle can
move without drawing a line.




TURTLE
METHODS

Turtle Method

What It Does

t

t

= Turtle(Q)

.home()

upQ)
.down()

.setheading(degrees)

.left(degrees)
.right(degrees)

.goto(x, y)
. forward(distance)

.pencolor(r, g, b)
.pencolor(string)

Creates a new Turtle object and opens its window.

Moves t to the center of the window and then points
t east.

Raises t's pen from the drawing surface.
Lowers t's pen to the drawing surface.

Points t in the indicated direction, which is specified in
degrees. East is O degrees, north is 90 degrees, west is
180 degrees, and south is 270 degrees.

Rotates t to the left or the right by the specified
degrees.

Moves t to the specified position.
Moves t the specified distance in the current direction.

Changes the pen color of t to the specified RGB value or
to the specified string, such as "red". Returns the current
color of t when the arguments are omitted.



TURTLE
METHODS

e+ t

+

.fillcolor(r, g, b)
.fillcolor(string)

.begin_fil110
.end_fil110

.clear()

.width(pixels)

.hideturtlie()
.Showturtle()

.position()
.heading()

.isdown()

Changes the fill color of t to the specified RGB value or to
the specified string, such as "red". Returns the current fill
color of t when the arguments are omitted.

Enclose a set of turtle commands that will draw a filled
shape using the current fill color.

Erases all of the turtle’s drawings, without changing the
turtle's state.

Changes the width of t to the specified number
of pixels. Returns t's current width when the argument
IS omitted.

Makes the turtle invisible or visible.

Returns the current position (x, y) of t.
Returns the current direction of t.

Returns True if t's pen is down or False otherwise.



' ® © @ Python Turtie Graphics

>>> from turtle import Turtle

>>> t = Turtle() 3

Figure 7-1 Drawing window for a turtle



>>> t.width(2) # For bolder lines
DRAW ]l SHA PE >>> t.left(90) # Turn to face north
>>> t.forward(30) # Draw a vertical line in black
>>> t.left(90) # Turn to face west
. >>> t.up() # Prepare to move without drawing
>>> from turtle mport Turtle >>> t.forward(10) # Move to beginning of horizontal Tline
>>> t = Turtle() >>> t.setheading(0) # Turn to face east
>>> t.pencolor("red")
>>> t.down() # Prepare to draw
>>> t.forward(20) # Draw a horizontal line 1in red
>>> t.hideturtle() # Make the turtle invisible

| ® © @ Python Turtle Graphics

| | ® © @ Python Turtie Graphics

T

Figure 7-2 Drawing vertical and horizontal lines for the letter T




DRAW SQUARE

def drawSquare(t, x, y, length):
"""Draws a square with the given turtle t, an upper-left
corner point (x, y), and a side's length."""
t.upQ
t.goto(x, y)
t.setheading(270)
t.down()
for count in range(4):
t.forward(length)
t.left(90)



IMAGE PROCESSING

e Analog and Digital Information - range of values and
discrete values

e Early recording and playback devices for images and sound
were all analog devices

e Continuous analog information in a real visual scene must
be mapped into a set of discrete values.

e This conversion process involves sampling



SAMPLING AND DIGITIZING IMAGES

A visual scene projects an infinite set of color and
intensity values onto a two-dimensional sensing medium,
such as a human being’s retina or a scanner’s surface

digital information can represent an image that is more
or less indistinguishable to the human eye from the
original scene

Sampling devices measure discrete color values at
distinct points on a two-dimensional grid. These values
are pixels



SAMPLING AND DIGITIZING IMAGES

e the more pixels that are sampled, the more continuous and
realistic the resulting image will appear

e the human eye cannot discern objects that are closer
together than 0.1 mm, so a sampling of 10 pixels per
linear millimeter (250 pixels per inch and 62,500 pixels
per square inch) would be plenty accurate.

e Thus, a 3-inch by 5-inch image would need 3 *5 *62,500
pixels/inch 937,500 pixels



IMAGE FILE FORMATS

e A raw image file saves all of the sampled information

e This has a cost and a benefit: The benefit is that the
display of a raw image will be the most true to life, but
the cost is that the file size of the image can be quite
large

e Two of the most popular image file formats are JPEG
(Joint Photographic Experts Group) and GIF (Graphic
Interchange Format)



IMAGE FILE FORMATS

e data-compression schemes are used to reduce the file size
of a JPEG 1image

e If any color values are the same, their positions rather
than their values are stored, thus potentially saving
many bits of storage

e Before the image is displayed, the original color values
are restored during the process of decompression

e This scheme is called lossless compression, meaning that
no information is lost



IMAGE FILE FORMATS

e another scheme analyzes larger regions of pixels and
saves a color value that the pixels’ colors approximate

e This is called a lossy scheme, meaning that some of the
original color information 1is lost

e human eye usually is not able to detect the difference
between the new colors and the original ones



IMAGE FILE FORMATS

e A GIF image relies on an entirely different compression scheme
e The compression algorithm consists of two phases

e first phase, the algorithm analyzes the color samples to build
a table, or color palette, of up to 256 of the most prevalent
colors

e The algorithm then visits each sample in the grid and replaces
it with the key of the closest color in the color palette

e The resulting image file thus consists of at most 256 color
values and the integer keys of the image’s colors 1in the
palette



IMAGE FILE FORMATS

e This strategy can potentially save a huge number of bits
of storage

e The decompression algorithm uses the keys and the color
palette to restore the grid of pixels for display

e Although GIF uses a lossy compression scheme, it works
very well for images with broad, flat areas of the same
color, such as cartoons, backgrounds, and banners

Ref. Kenneth A Lambert, Fundamentals of first python programs, 2nd edition



IMAGE-MANIPULATION (PERATIONS

e either transform the information in the pixels or alter the arrangement of
the pixels in the image

o Rotate an image

o Convert an image from color to grayscale
o Apply color filtering to an -image

o Highlight a particular area in an image
o Blur all or part of an image

o Sharpen all or part of an image

o Control the brightness of an image

o Perform edge detection on an image

o Enlarge or reduce an image’s size

o Apply color 1inversion to an image

o Morph an image into another -image

Ref. Kenneth A Lambert, Fundamentals of first python programs, 2nd edition



THE PROPERTIES OF IMAGES

When an image 1is loaded into a program such as a Web browser,
the software maps the bits from the image file into a
rectangular area of colored pixels for display

The coordinates of the pixels in this two-dimensional grid
range from (0, 0) at the upper-left corner of an image to
(width - 1, height - 1) at the lower-right corner, where width
and height are the image’s dimensions 1in pixels

Thus, the screen coordinate system for the display of an image
is somewhat different from the standard Cartesian coordinate
system that we used with Turtle graphics, where the origin (0,
©) is at the center of the rectangular grid



THE IMAGES MODULE

Ref.

allows the programmer to load an image from a file, view
the image in a window, examine and manipulate an image’s
RGB values, and save the image to a file

a non-standard, open-source Python tool
includes a class named Image

The Image class represents an image as a two-dimensional
grid of RGB values

Kenneth A Lambert, Fundamentals of first python programs, 2nd edition



Image Method What It Does

I H [ I AG [S i = Image(filename) Loads and returns an image from a file with the
given filename. Raises an error if the filename is
not found or the file is not a GIF file.

M 0 D U l[ i = Image(width, height) Creates and returns a blank image with the given
dimensions. The color of each pixel is transpar-
ent, and the filename is the empty string.

i.getWidth(Q Returns the width of 1 in pixels.
i.getHeight() Returns the height of 1 in pixels.
i.getPixel(x, y) Returns a tuple of integers representing the RGB
values of the pixel at position (x, y).
i.setPixel(x, y, (r, g, b)) Replaces the RGB value at the position (x, y) with
the RGB value given by the tuple (r, g, b).
i.draw() Displays 1 in a window. The user must close the
window to return control to the method's caller.
i.clone() Returns a copy of 1.
i.save() Saves 1 under its current filename. If i does not

yet have a filename, save does nothing.

i.save(filename) Saves i under filename. Automatically adds a
.gif extension if filename does not contain it.

Ref. Kenneth A Lamberts—Freamerntats—erFirot ootheon sremrams—dnd cdition—



IH[ IMA(}ES >>> from images import Image
>>> image = Image(''smokey.gif™)

MODUI.E >>> image.draw()

|

Ref. Kenneth A Lambert, Fundamentals of first python programs, 2nd edition



Python raises an exception if it cannot locate the file in the current directory, or if the file is not
I H [ IM AG [ S a GIF file. Note also that the user must close the window to return control to the caller of the

method draw. If you are working in the shell, the shell prompt will reappear when you do this.
M 0 D U l_ [ The image can then be redrawn, after other operations are performed, by calling draw again.

Once an image has been created, you can examine its width and height, as follows:

>>> image.getWidth()
198

>>> image.getHeight()
149

Alternatively, you can print the image’s string representation:

>>> print(image)
Filename: smokey.gif
Width: 198

Height: 149

The method getPixel returns a tuple of the RGB values at the given coordinates. The
following session shows the information for the pixel at position (0, 0), which is at the
image’s upper-left corner.

>>> image.getPixel (0, 0)
(194, 221, 114)

Ref. Kenneth A Lambert, Fundamentals of first python programs, 2nd edition



>>> image = Image(150, 150)
THE IMAG[S >>> image.draw()
>>> blue = (0, 0, 255)
>>> y = image.getHeight() // 2
MODUI_[ >>> for x in range(image.getWidth()):
image.setPixel(x, y - 1, blue)
image.setPixel(x, y, blue)
image.setPixel(x, y + 1, blue)
>>> image.draw()
>>> image.save("horizontal.gif")

Figure 7-10 Animage before and after replacing the pixels

Ref. Kenneth A Lambert, Fundamentals of first python programs, 2nd edition



IMAGE GRID

e Uses nested loop structure to traverse 2 dimensional grid

01 2 3 4

>>> width = 2

>>> height = 3

>>> for y 1in range(height):
for x in range(width):

N — O

Figure 7-11 A grid with 3 rows and 5 columns

print((x, y), end = " ")
print()
0, 0) (1, 0)

0, 1) a4, D
o, 2 a, 2

Ref. Kenneth A Lambert, Fundamentals of first python programs, 2nd edition



IMAGE GRID

e Uses nested loop structure to fill a blank image with red

image = Image(150, 150)
for y in range(image.getHeight()):
for x 1in range(image.getWidth()):
image.setPixel (x, y, (255, 0, 0))

Ref. Kenneth A Lambert, Fundamentals of first python programs, 2nd edition



COLOR IMAGE TO BLACK & WHITE sroe tnases s suae

# Code for blackAndwhite's function definition goes here

def blackAndwhite(image): def main(filename = "smokey.gif"):
"""Converts the argument image to black an image = Image(filename)
blackPixel = (0, 0, 0) print("Close the image window to continue.")
whitePixel = (255, 255, 255) Imaga:dean()
" 2 ’ : blackAndWhite(image)
Co;:xyf&.r%y"j rl!?Af'@ngne(\'lmagﬁrge\tl‘le]ghto) ;)e-(o;:lcr:i, scail pr"int("C'Iose the image window to quit.")

for x in range(image.getWidth()): image.draw()

(r, g, b) = image.getPixel(x, y) g ——
average = (r + g + b) // 3 main()

__main__

if average < 128:
image.setPixel (x, y, blackPixel)
else: ® smokey.gif
image.setPixel (x, y, whitePixel)

Ref. Kenneth A Lambert, Fundamentals of first python programs, 2nd edition



def grayscale(image):

COLOR IMAGE TO GRAYSCALE s s e g vt

for x in range(image.getWidth()):
(r, g, b) = image.getPixel(x, y)

e Human eye 1s more ;f:::g g-g:?;
sensitive to red b = int(b * 0.114)
than blue Tum =r +g+b

image.setPixel (x, y, (Tum, Tum, Tum))
e Psychologists
determined the
relative ® smokey.gif
propositions of
RGB as 0.299,
©.587 and 0.114

Ref. Kenneth A Lambert, Fundamentals of first python programs, 2nd edition



COPYING AN IMAGE

>>> from 1images import Image

>>> image = Image(''smokey.gif")

>>> image.draw()

>>> newlmage = image.clone() # Create a copy of image
>>> newlImage.draw()

>>> grayscale(newImage) # Change in second window only
>>> newlmage.draw()
>>> image.draw() # Verify no change to original

Ref. Kenneth A Lambert, Fundamentals of first python programs, 2nd edition



IMAGE BLURRING

e an image appears to contain rough, jagged edges, this
condition, known as pixelation, can be mitigated by
blurring the image

e Blurring makes these areas appear softer

e Resets each pixel’s color to the average of the four
pixels surround it

e Traverse from (1,1) to (width-2,height-2)

Ref. Kenneth A Lambert, Fundamentals of first python programs, 2nd edition



BLURRING AN IMAGE

(0,0) (0,1) (0,2)
(1,1)

(1,0) (x,y) (1,2)

(2,0) (2,1) (2,2)

def blur(image):
"""Builds and returns a new image which is a

#1

#2

#3

mman

blurred copy of the argument image.
def tripleSum(triplel, triple2):
(rl, gl, bl) triplel

(r2, g2, b2) = triple2
return (rl + r2, gl + g2, bl + b2)

new = image.clone()
for y in range(l, image.getHeight() - 1):

for x in range(l, image.getWidth() - 1):

oldP = image.getPixel(x, y)

left = image.getPixel(x - 1, y)
right = image.getPixel(x + 1, y)
top = image.getPixel(x, y - 1)
bottom = image.getPixel(x, y + 1)
sums = reduce(tripleSum,

# To left
# To right
# Above

# Below

[o1dP, left, right, top, bottom])

averages = tuple(map(lambda x: x // 5, sums))
new.setPixel(x, y, averages)
CAanur -re’turn\new\ asarning All Rinhte Racarvard Mav nat ha raniard ¢ >

Ref. Kenneth A Lambert, Fundamentals of first python programs, 2nd edition



def detectEdges(image, amount):
"""Builds and returns a new image in which the edges of

the argument image are highlighted and the colors are
DG[ [.‘.[(.‘.IO N reduced to black and white."""

def average(triple):
(r, g, b) = triple

e removes the full colors to return (r + g + b) // 3

uncover the outlines of the blackPixel = (0, 0, 0)

objects represented in the image whitePixel = (255, 255, 255)
e simple edge-detection algorithm D = Joage:cleneO

examines the neighbors below and for y in range(image.getleight() - 1):

. . for x in range(l, image.getWidth()):

to the left of each p'lxe'L Tn an oldPixel = image.getPixel(x, y)

'image leftPixel = image.getPixel(x - 1, y)
° If the luminance of the p‘ixe'L bottomPixel = image.getPixel(x, y + 1)

. . oldLum = average(oldPixel)
differs from that of either of leftLum = average(leftPixel)
these two ne'ighbors by a bottomLum = average(bottomPixel)

. ey t t h if abs(oldLum - leftLum) > amount or \
signirtican amount, Yyou ave abs(oldLum - bottomLum) > amount:
detected an edge, and you set new.setPixel(x, y, blackPixel)

. ’ else:
that pixel’s color to black. new.setPixel (x, y, whitePixel)

Otherwise, you set the pixel’s return new
color to white

Ref. Kenneth A Lambert, Fundamentals of first python programs, 2nd edition



LDGE DETECTION

@ smokey.gif

Figure 7-14 Edge detection: the original image, a luminance threshold of 10, and a
luminance threshold of 20

Ref. Kenneth A Lambert, Fundamentals of first python programs, 2nd edition



REDUCING IMAGE S1ZE

e Asize reduction usually preserves an
image’s aspect ratio (that is, the ratio of
its width to its height)

e simple way to shrink an image is to
create a new image whose width and
height are a constant fraction of the
original image’s width and height

e The algorithm then copies the color
values of just some of the original
image’s pixels to the new image

e For example, to reduce the size of an
image by a factor of 2, you could copy
the color values from every other row
and every other column of the original
image to the new image

Ref. Kenneth A Lambert,

def shrink(image, factor):

Builds and returns a new image which is a smaller

copy of the argument image, by the factor argument."""

width = image.getWidth()

height = image.getHeight()

new = Image(width // factor, height // factor)
oldY = 0

newY 0
while oldY < height - factor:
oldX = 0
newX = 0
while oldX < width - factor:
oldP = image.getPixel (o1dX, oldY)
new.setPixel (newX, newY, oldP)
oldX += factor
newX += 1
oldY += factor
newY += 1
return new

Fundamentals of first python programs, 2nd edition



GRAPHICAL USER INTERFACES

e Event driven programs
e Inactive until user clicks a button or selects a menu option

e Terminal based program maintains a constant control over the
interactions with the user

e terminal-based program prompts users to enter successive
inputs, whereas a GUI program puts users in change, allowing
them to enter inputs in any order and waiting for them to press
a command button or select a menu option



GRAPHICAL USER INTERFACES

®e0e " pythonfiles — -bash — 59x12 ‘4

Last login: Mon Jun 12 96:48:11 on console =]
‘tiger:~ lambertk$ cd pythonfiles
‘tiger:pythonfiles lambertk$ python3 taxform.py
Enter the gross income: 25000.00

Enter the number of dependents: 2

The income tax is $1800.0

‘tiger:pythonfiles lambertk$ python3 taxform.py
Enter the gross income: 24000

Enter the number of dependents: 2

The income tax is $1600.0

tiger:pythonfiles lambertks$

Figure 8-1 A session with the terminal-based tax calculator program

Ref. Kenneth A Lambert, Fundamentals of first python programs, 2nd edition



GRAPHICAL USER INTERFACES

Tax Calculator LK Tax Calculator
Gross income 0.0 Gross income  25000.00
Dependents 0 Dependents 12
Compute Compute
Total tax 0.0 Total tax 1800.00

Figure 8-2 A GUI-based tax calculator program

Ref. Kenneth A Lambert, Fundamentals of first python programs, 2nd edition



Connand Labels WINDOW COMPONENTS

buttons
N i
\ //
Tax Calculator
T~ Title
bar
Dependents
Comput Command
button
Total tax 0.0
Entry
fields

Figure 8-2 A GUI-based tax calculator program

Ref. Kenneth A Lambert, Fundamentals of first python programs, 2nd edition



GRAPHICAL USER INTERFACES

e user is not constrained to enter inputs in a particular order

e Before pressing the Compute button, can edit any of the data in
the two input fields

e Running different data sets does not require re-entering all of
the data

e The user can edit just one value and press the Compute button
to observe different results



EVENT DRIVEN PROGRAMMING

e opens a window and waits for the user to manipulate window
components with the mouse

e user-generated events, such as mouse clicks, trigger
operations in the program to respond by pulling in inputs,
processing them, and displaying results



I [ M P Uﬂ [ FO R (z\U I from breezypythongui import EasyFrame
P R 0 (] RA M S Other imports

class ApplicationName(EasyFrame):
The _ init__ method definition
Definitions of event handling methods

def main(Q):
ApplicationName() .mainloop()

~ main__":

if __name_ ==
main()

Ref. Kenneth A Lambert, Fundamentals of first python programs, 2nd edition



TEMPLATE FOR GUT  Fine: aberenc.sy
P R 0 (1 RA M S from breezypythongui import EasyFrame

class LabelDemo(EasyFrame):
"""Displays a greeting in a window."""
def __init__(self):
"""Sets up the window and the 1abel."""
EasyFrame.__init_ (self)
self.addLabel (text = "Hello world!", row = 0, column = 0)

def mainQ:
"""Instantiates and pops up the window.
LabelDemo() .mainloop()

if _name_ == "_ main__":

main()

Ref. Kenneth A Lambert, Fundamentals of first python programs, 2nd edition



Another way to change a window’s

WI N DOW attributes is to reset them in the

window’s attribute dictionary

In the labeldemo’s __init_ method,

Windows and Their Attributes

A window has several attributes. The most important ones are its self["background~]="yellow

e title (an empty string by default)
e width and height in pixels
e resizability (true by default)

e background color (white by default)

EasyFrame.__init__(self, width = 300, height = 200, title = "Label Demo")

Ref. Kenneth A Lambert, Fundamentals of first python programs, 2nd edition



WI N DOW The final way to change a window’s attributes is to run a method included in the EasyFrame
class. This class includes the four methods listed in Table 8-1.

EasyFrame Method What It Does

setBackground(color) Sets the window's background color to color.

setResizable(aBoolean) Makes the window resizable (True) or not
(False).

setSize(width, height) Sets the window's width and height in pixels.

setTitle(title) Sets the window's title to title.

Table 8-1 Methods to change a window's attributes

Ref. Kenneth A Lambert, Fundamentals of first python programs, 2nd edition



class LayoutDemo(EasyFrame):
"""Displays labels in the quadrants."""

def __init__(self):
"""Sets up the window and the labels."""
EasyFrame._ init_ (self)

sel f.addLabel (text = "(0, 00", row = 0, column = 0)
self.addLabel (text = "(0, 1)", row = 0, column = 1)
self.addLabel (text = “"(1, 00", row = 1, column = 0)
sel f.addLabel (text = "(1, 1)", row = 1, column = 1)

ece
(0,0) (0,1)
(1,00 (1,1

Figure 8-5 Laying out labels in
the window’s grid

Ref. Kenneth A Lambert, Fundamentals of first python programs, 2nd edition



sel f.addLabel (text = "(0, 0)", row = 0, column = 0,
sticky = "NSEW")

sel f.addLabel (text = "(0, 1)", row = 0, column = 1,
sticky = "NSEW'")

self.addLabel (text = "(1, 0 and 1)", row = 1, column = 0,
sticky = "NSEW", columnspan = 2)

(0,0) 4 (0, 1)

--1---

(1,0and 1)

Ref. Kenneth A Lambert, Fundamentals of first python programs, 2nd edition



Type of Window Component

Purpose

Label
IntegerField(Entry)

FloatField(Entry)

TextField(Entry)

TextArea(Text)

EasyListbox(Listbox)

Displays text or an image in the window.
A box for input or output of integers.

A box for input or output of floating-point
numbers.

A box for input or output of a single line of text.

A scrollable box for input or output of multiple
lines of text.

A scrollable box for the display and selection of a
list of items.

Ref. Kenneth A Lambert, Fundamentals of first python programs, 2nd edition



Type of Window Component

Purpose

Button
EasyCheckbutton(Checkbutton)

Radiobutton

EasyRadiobuttonGroup(Frame)

EasyMenuBar (Frame)
EasyMenubutton(Menubutton)
EasyMenuItem

Scale

EasyCanvas(Canvas)

EasyPanel (Frame)

EasyDialog(simpleDialog.Dialog)

A clickable command area.
A labeled checkbox.

A labeled disc that, when selected, deselects
related radio buttons.

Organizes a set of radio buttons, allowing only
one at a time to be selected.

Organizes a set of menus.
A menu of drop-down command options.
An option in a drop-down menu.

A labeled slider bar for selecting a value from a
range of values.

A rectangular area for drawing shapes or
images.

A rectangular area with its own grid for organiz-
ing window components.

A resource for defining special-purpose popup
windows.

Ref. Kenneth A Lambert, Fundamentals of first python programs, 2nd

edition



from breezypythongui import EasyFrame
from tkinter import PhotoImage
from tkinter.font import Font

class ImageDemo(EasyFrame):
"""Displays an image and a caption.

mmnn

def __init_ (self):
"""Sets up the window and the widgets.
EasyFrame.__init__(self, title = "Image Demo")
self.setResizable(False);
imagelLabel = self.addLabel (text = "",
row = 0, column = 0,
sticky = "NSEW")
textLabel = self.addLabel (text = "Smokey the cat",
row = 1, column = 0,
sticky = ""NSEW")

LLALA L

# Load the image and associate it with the image label.
self.image = PhotoImage(file = "smokey.gif")
imagelLabel["image"] = self.image

# Set the font and color of the caption.
font = Font(family = "Verdana", size = 20,
slant = "italic")

textLabel["font"] = font
textLabel [ foreground"] = "blue"

Ref. Kenneth A Lambert, Fundamentals of first

Smokey the cat

Figure 8-7 Displaying a captioned image

python programs, 2nd edition



Label Attribute

Type of Value

image

text

background

foreground

font

A PhotoImage object (imported from tkinter. font). Must be
loaded from a GIF file.

A string.

A color. A label's background is the color of the rectangular area
enclosing the text of the label.

A color. A label's foreground is the color of its text.

A Font object (imported from tkinter. font).

Table 8-3 The tkinter.Label attributes

Ref. Kenneth A Lambert, Fundamentals of first python programs, 2nd edition



class ButtonDemo(EasyFrame):
"""T1lustrates command buttons and user events.'"""

def __init___(self):

. v L@ © @ Button Demo | @ @ @ Button Demo
"""Sets up the window, label, and buttons."™' | ;
EasyFrame. init__ (self) Hello world!
Clear Restore

# A single label in the first row.

self.label = self.addLabel(text = "Hello world!",
row = 0, column = 0,
columnspan = 2,
sticky = "NSEW")

# Two command buttons in the second row.
self.clearBtn = self.addButton(text = "Clear"”,
row = 1, column = 0)
self.restoreBtn = self.addButton(text = "Restore",
row = 1, column = 1,
state = "disabled")

Ref. Kenneth A Lambert, Fundamentals of first python programs, 2nd edition



# Methods to handle user events.

def clear(self):
"""Resets the label to the empty string and updates
the button states."""
self.label ["text"] = ""
self.clearBtn["state"] = "disabled"
self.restoreBtn["state"] = "normal"”

def restore(self):
""""Resets the label to 'Hello world!' and updates
the button states.'""
self.label["text"] = "Hello world!"
self.clearBtn["state"] = "normal"
self.restoreBtn["'state"] = "disabled"”

Ref. Kenneth A Lambert, Fundamentals of first python programs, 2nd edition



class TextFieldDemo(EasyFrame):
"""Converts an input string to uppercase and displays
the result."""

def __init__(self):
"""Sets up the window and widgets.
EasyFrame.__init__(self, title = "Text Field Demo™)

# Label and field for the 1input
self.addLabel (text = "Input”, row = 0, column = 0)
self.inputField = self.addTextField(text = "",
row = 0,
column = 1)

# Label and field for the output
self.addLabel (text = "Output”, row = 1, column = 0)
self.outputField = self.addTextField(text = "",
row = 1,
column = 1,

state = "readonly")

# The command button
self.addButton(text = "Convert", row = 2, column = 0,
columnspan = 2, command = self.convert)

# The event handling method for the button

def convert(self):
"""Inputs the string, converts it to uppercase,
and outputs the result."""
text = self.inputField.getText()
result = text.upper()
self.outputField.setText(result)

ket. nennetn A Lampert, runaamentats oT T1rst python

| ® © ® Text Field Demo |
Input GUI programming is fun!
Output  GUI PROGRAMMING IS FUN!

Convert

programs, 2nd edition



# Label and field for the input
self.addLabel (text = "An integer”,
row = 0, column = 0)
self.inputField = self.addIntegerField(value = 0,
row = 0,
column = 1,
width = 10)

# Label and field for the output
self.addLabel (text = "Square root",

row = 1, column = 0)
self.outputField = self.addFloatField(value = 0.0,

row = 1,
column = 1,
width = 8,

precision = 2,
state = "readonly")
class NumberFieldDemo(EasyFrame):
"""Computes and displays the square root of an # The command button
input number.""" self.addButton(text = "Compute”, row = 2, column = 0,
columnspan = 2,

def __init__(self): e

EasyFrame. 1init__(self, title = "Number Field Demo")
S ' e - ‘ ‘ ‘ # The event handling method for the button

def computeSqrt(self):
""Tnputs the integer, computes the square root,
and outputs the result."""
number = self.inputField.getNumber()
result = math.sqrt(number)
self.outputField.setNumber(result)

Ref. Kenneth A Lambert, Fundamentals of first python programs, 2nd edition



